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Abstract – Tracking ground moving objects using aerial 
video sensors is very challenging when the objects go 
through periods of occlusion caused by trees or 
buildings.  If the occlusion interval is relatively large, 
there are confusing objects in the vicinity, or the object 
performs abrupt maneuvers while occluded, 
maintaining continuous tracks after the occlusion 
requires advanced exploitation of the imagery. This 
paper presents a signature-aided multiple hypothesis 
tracking system where signatures are extracted during 
periods of certainty and used after the occlusion to 
resolve association ambiguity. The discussion focuses 
on the interaction between the tracker and the signature 
extraction/exploitation module, as well as other tracking 
aspects within the signature-aided tracking paradigm. 
 
Keywords: Tracking, video, data association, estimation, 
signature-aided tracking. 

1  Introduction 
Steerable video cameras are rapidly finding their way into 
most air-to-ground surveillance platforms (Figure 1). The 
fact that imagery can be easily interpreted by the 
operators makes them very popular. Tracking moving 
objects for extended periods of time, however, can be 
very demanding for the operator. The field of view (FOV) 
that is most appropriate for object recognition typically 
results in a very small coverage area, and the simple task 
of aiming the camera to maintain the object within the 
FOV requires uninterrupted attention. Thus, any means to 
automate the task of aiming the camera and tracking 
objects on the ground is usually very welcome by the 
operators. 
 
Tracking ground objects automatically requires a means 
to detect the objects in the imagery, a means to associate 
these detections with established tracks, and a means to 
aim the camera at an appropriate point on the ground. All 
these tasks are very challenging when the objects go 
through periods of occlusion by trees or buildings and the 
objects are not visible. Thus, to have continuous tracks 
after periods of occlusion, we need to detect the object 
when the object reappears, and recognize those detections 
as corresponding to the same object that was being 

tracked before the occlusion. The association can be done 
based on kinematics if the occlusion is relatively short, in 
the order of a few seconds, but can be very challenging if 
the occlusion interval is relatively large, there are 
confusing objects in the vicinity, or the object performs 
abrupt maneuvers while occluded. Much higher 
performance and reliability is achieved by further 
exploiting the imagery to associate new detections to 
established tracks.  
 
This paper presents a signature-aided multiple hypothesis 
tracking system to track objects through periods of 
occlusion and/or coverage gaps. The system architecture 
and main components were developed under the VIdeo 
Verification of IDentity (VIVID) program sponsored by 
the US Defense Advanced Research Projects Agency 
(DARPA), and continue to be extended under other 
programs with similar objectives. 

 
Figure 1: Steerable video cameras are becoming very 

popular in air-to-ground surveillance and tracking 
applications. 

 
The paper is organized as follows. Section 2 describes the 
main functional blocks of the system. Section 3 describes 
the interaction between the signature extraction and 
exploitation module with both the multiple hypothesis 
tracker and the sensor resource manager that controls the 
camera. Section 4 presents two examples: one example in 
which the FOV of the camera is maintained fixed, and 
another example when the FOV is changed to improved 
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the recognizability of the target. Finally, Section 5 
provides a summary.     

2  System Components 
 
The multiple target video tracker is comprised of four 
sub-components as shown in Figure 2 below: a Video 
Processor (VP), a Multiple Hypothesis Tracker (MHT), a 
Confirmatory ID (CID), and a Sensor Resource Manager 
(SRM).  The function of the VP is to detect moving 
objects and generate “micro-tracks” and high-confidence 
associations for the downstream tracker by processing the 
raw sensor streams of motion imagery and metadata. The 
VP makes few assumptions about the scene content, 
operating almost exclusively in the focal plane domain, 
and exploits the spatial and temporal coherence of the 
video data.  Three main components of the VP subsystem 
are a Point Tracker, which detects and associates sparse 
interest points from frame to frame; a Motion Segmenter, 
which clusters interest points and classifies moving 
regions using several video frames; and a Template 
Matcher, which holds track on slow-moving and stopped 
targets that would otherwise be overlooked by motion-
based algorithms. 
 
The Point Tracker detects interest points in a given frame 
using a metric based on eigenvalues of the Hessian of the 
spatial image gradient at each pixel. Peaks in the metric 
function are detected, and a multi-level spatial bucketing 
technique ensures that points are both distributed across 
the image extent and separated sufficiently from one 

another to describe the primary scene content. In 
subsequent frames, these points are replenished as 
necessary to describe newly visible content. Each point is 
tracked from frame to frame at sub-pixel accuracy using 
an iterative multi-resolution gradient descent algorithm 
that seeks to minimize the sum of squared errors between 
pixel colors within a fixed patch around each point. 
Further details of the algorithms associated with the VP 
can be found in [1]. Figure 3 below shows an example 
with the original frame, extracted interest points, points 
stabilized to a common background, and micro-tracks. 
 
As a result of the detection mechanism, the VP also 
generates bounding boxes and masks associated with 
those detections. We refer to the bounding box and mask, 
in conjunction with the portion of the image associated 
with the bounding box, as image chip. The image chips 
associated with the detections are sent to the 
Confirmatory ID (CID) module for further processing. 
The CID module uses these chips to extract object 
signatures. We use the term signature in a broad sense to 
indicate any set of features used by the CID module to 
distinguish that particular object from other objects. 
These features can comprise color histograms, edge maps, 
shape histograms, and other attributes. The CID generates 
signatures from image chips that correspond to 
established tracks, and compares them with image chips 
corresponding to new micro-tracks to determine whether 
those signatures correspond to the same object or not. 
This information is passed back to the tracker in the form 
of approximated likelihoods. Exact likelihoods are very 
difficult to generate because the amount of data used to 

Figure 2: The video tracker automatically detects moving objects and extracts signatures for each object that is 
being tracked. After occlusion and other periods of uncertainty, it exploits the signatures to resolve the ambiguity 
and maintain track continuity. The sensor resource manager commands the sensor to support the entire signature 

extraction and exploitation process. 
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generate the signatures is relatively small, but these 
likelihoods are needed by the tracker to combine CID-
extracted information with kinematic likelihoods. 
 
The MHT processes the LOS and feature reports from the 
VP to create and update moving object tracks. Tracks 
comprise position and velocity estimates, feature 
estimates, error covariances, and hypothesis likelihoods. 
The tracker also maintains a probabilistic estimate of the 
occlusion status of each target. This is required so that the 
SRM can correctly evaluate the probability of detecting a 
target when determining whether resources should be 
expended to observe that target. The tracker understands 
each target to have a binary occlusion state, and updates 
an associated probability of occlusion for that target 
forward in time according to a Poisson-Bernoulli model 
of occlusion state evolution in the absence of any external 
information from the video processor. (This will occur, 
for example, if the camera is otherwise tasked and is 
pointed away from where the tracker predicts the target 
should be located.) When the camera does attempt to 
view the target at a location predicted by the tracker, the 
video processor then confirms that the target either was 
seen or was not seen during that attempt. This 
information is then used to update the probability of 
occlusion based on the computed probability that the 
target is within the camera footprint, and VP performance 
parameters indicating the probability the target would be 
detected given it is both unoccluded and within the 

camera footprint, and the probability of false alarm 
generation. The tracker also interacts with the CID 
module as described in Section 3.1.  
 
The SRM manages the information collection necessary 
to support kinematic tracking, multi-target track 
association, as well as the acquisition of high resolution 
imagery to support the CID functions. Typically, the 
image resolution required by the CID module to generate 
reliable signatures is higher than the resolution required 
to detect and track targets; therefore, the SRM selects the 
appropriate FOV depending on the current tasks. The 
SRM balances the expected payoff of alternative viewing 
options against the costs due to sensor slewing, settling 
and collection time and tasks the sensor to optimize 
tracking performance. Section 3.2 describes the CID 
performance modeling used by the SRM to determine 
when to collect new imagery to support the CID 
functions. 

3  Signature-aided Tracking 
3.1  MHT and CID Interaction 
This section describes the MHT internal structure and its 
interaction with the CID module. An MHT functional 
diagram is shown in Figure 4. The MHT receives 
detections and features that the VP has extracted from the 
imagery, and associates them to predicted track 
hypotheses to form multiple track hypotheses. These 

Figure 3: An example of motion segmentation: interest point tracks (b) from a frame (a) are stabilized to a common 
background (c). Outliers are detected and clustered according to consistency of motion and proximity (d). 



hypotheses represent different possibilities regarding 
detection-to-track associations that for example include 
the association of the detection to an existing track 
(hypothesis 1), the association of the detection to another 
nearby track (hypothesis 2), the association of a track to a 
missed detection (hypothesis 3), and other similar 
hypotheses. The tracker then updates the state estimates 
for each one of these track hypotheses, and updates the 
hypothesis likelihoods as well. A Kalman Filter is used to 
estimate the state of each track hypothesis. The likelihood 
of each alternative combines both the kinematic 
information as well as the information provided by the 
CID module via the CID response message, as indicated 
in the figure. A highly confident CID response that favors 
one hypothesis immediately triggers the pruning of the 
alternative hypotheses. CID confidence is derived from 
the ratio of the likelihoods of the different alternatives in 
the CID response message.  
 
The MHT then prunes the hypothesis tree, where the 
hypotheses with the lowest likelihood are removed from 
the system to avoid an explosion of hypotheses. The 
pruning process also removes the ambiguity in some 
assignments, since some of the track hypotheses that 
contain a given detection are removed, possibly leaving a 
single track with the associated detection. When that 
happens, that detection is unambiguously assigned to a 
particular target. This is desirable because that detection 
becomes a candidate for a learning message and can be 
sent to the CID module to improve the signatures for that 
particular target. The output of the pruning module 
consists of a set of alternative hypotheses that explains 
the sequence of detections that have been received from 
the VP since the beginning of the process.  
 
The global hypothesis with the highest likelihood is sent 
to the display. The best global hypothesis represents the 
best description of the tracking status that the video 
tracker can provide at a given time. A more complete 
status of the MHT that includes all the relevant track 
hypotheses and their likelihoods is sent to the SRM 
module. The SRM uses that information to select the best 
aimpoint and FOV to track and to remove ambiguities. 
The hypothesis tree is also reviewed by the ambiguity 

evaluator to determine the detection ambiguity status. If a 
detection has been unambiguously associated to a target 
and no other detections have been associated to that target 
at that particular time, the detection becomes a CID 
learning candidate. If the detection is ambiguously 
associated to more than one target, or there are multiple 
detections associated to a target at a given time, that 
detection becomes a CID query candidate. To maintain 
the object signatures as pure as possible, not all of the 
candidates become part of learning or query messages. 
For example, if the length and width measurements in a 
stream of detections are unstable, this may indicate that 
the target is going behind trees or other occlusion, and the 
detections are deemed not suitable for CID purposes. 
Checking that the detections are stable prevents the 
corruption of the object signatures. 
 
The loop is closed by the prediction module that takes the 
existing track hypotheses and predicts the motion of the 
vehicles using a Kalman Filter. The prediction includes 
both the state estimate (position and velocity) as well as 
the covariance matrices that indicate the prediction 
uncertainty. This is passed to the association step that 
combines it with the measurement errors to create gates 
that reject very unlikely associations. The predictions and 
corresponding uncertainties are also used to compute the 
likelihood ratios.  
 
3.2  SRM and CID Interaction 
We now discuss the SRM interaction with CID capability. 
The SRM manages two distinct decision tasks associated 
with the CID module. First, the SRM has to schedule 
learning sequences of video to be captured during times 
when the MHT can clearly disambiguate relevant targets. 
In order to do this, the SRM has to assess both the value 
of the targets of interest (which may be derived from 
either their nomination status or their proximity to other 
nominated targets because of anticipated confusion 
zones) as well as the current requirements of the CID 
module to perform efficiently when an identification 
query is submitted. Second, the SRM has to schedule CID 
queries of relevant targets when appropriate. In order to 
do this, the SRM has to assess both the scene confusion 
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Figure 4: The MHT processes VP detections, creates and maintains tracks, and interacts with the CID module. 



content (as calculated within the MHT) as well as the 
anticipated performance of the CID module before the 
query is submitted. 
 
Both the assessments of target value and scene confusion 
are functions that the SRM can perform with only direct 
contact with MHT. However, for both the assessment of 
CID requirements in the scheduling of learning 
sequences, and for the prediction of anticipated benefit in 
determining if images should be collected for CID query 
submission, the SRM requires an explicit quantitative 
estimate of the impact of additional camera video 
sequences on expected CID performance. In support of 
this, the tracker maintains a probabilistic estimate of 
binary target CID recognizability status, similarly as it 
does with target occlusion status, according to a Poisson-
Bernoulli model of recognizability devolution in the 
absence of processed learning sequences. (This decay 
modeling is necessary to capture real effects of 
recognizability degradation because of temporal and 
environmental variations in visibility conditions due to 
fog, solar ephemeris, etc.) Additionally, when learning 
images are acquired they impact the CID recognition 
probability according to a precisely defined probability 
model of affirmatively transitioning CID recognizability 
status at a given pose (aspect and grazing angle) and 
resolution. The associated CID recognition probability 
maintained for each target inside the tracker is therefore a 
dynamically estimated probability of the CID module’s 
ability to perform successfully as a function of the target 
pose and target resolution with respect to the airborne 
platform. 
 
Letting ( )(T)

tP θ  denote the probability of CID 

recognizability for target T at pose θ  and time t (and 
suppressing dependence on resolution for notational 
simplicity), the above motion modeling assumptions 
imply the temporal decay update equation over a time 
interval Δt: 
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where λ denotes the Poisson rate parameter in the 
recognizability devolution model.  Similarly, letting 

( )(T)
t

P θ−  and ( )(T)
t

P θ+  denote the probabilities of CID 

recognizability for target T at pose θ  and time t  before 

and after processing of an acquired learning image, 
respectively, the above impact modeling assumptions 
imply the instantaneous impact update equation at time t: 
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where Δθ  denotes the pose deviation from learned image 
and  pCID(Δθ) denotes the CID impact model for generic 
targets; i.e. pCID(Δθ) is the probability that a target 
becomes CID recognizable at a given pose after a 
learning image is acquired at pose deviation  Δθ, given 
that it was not recognizable before the learning image was 
acquired. 
 
The impact model  pCID(Δθ) is ideally based upon the 
empirically measured sensitivity of the CID algorithms to 
deviations from learning pose. For example, if the CID 
module has a learning image of a vehicle acquired at a 45 
degree aspect angle,  pCID(Δθ) encodes how CID 
recognition performance degrades for comparative 
images obtained at 50 degrees, 55 degrees, etc.  Figure 6 
illustrates the model update process described for both a 
simple “band” defined image-based model and a more 
intricate “decay” model about three captured poses, 
assuming for simplicity that pose is defined by aspect 
only. Note that the performance models (i.e., maintained 
CID recognition probabilities) are displayed on different 
scales in the figure for clarification only, and that they 
actually both peak at probability 1. We may even 
incorporate information that learned images at certain 
poses provide evidence for CID performance at entirely 
different orientations, due to anticipated symmetries in 
target appearance from opposite directions. Thus, a 
learned image at 90 degrees aspect can potentially impact 
CID performance at 270 degrees aspect as well. Higher 
impact models of varying complexity may also be 
pursued. We remark here that what is relevant to the SRM 
is not the precise form of the image-specific modeling 
that is used, but merely that some quantitative impact 
model of this type exists so that expected CID 
performance can be correctly imputed and CID 
scheduling can be balanced by the SRM against 
competing tracker goals. 



Figure 5: Image-based CID impact models support CID 
(recognition probability) performance modeling. 

 
Given the performance modeling notation above, we now 
address how the SRM utilizes the CID recognition 
probabilities and MHT input in order to learn on known 
targets and to disambiguate target confusions. In order to 
schedule a learning sequence for a known target T at a 
known pose θ  (as determined by the MHT and available 
or estimated metadata), the SRM refers to the maintained 
recognition probability ( )(T)

tP θ  directly to determine 

the added benefit of collecting additional video images. 
Furthermore, in order to determine whether a query 
should be submitted for an unknown target at a known 
pose (as determined by the MHT and available or 
estimated metadata), the SRM determines the probability 
that the CID module can recognize the queried image 
among all suggested candidate targets by evaluating the 
convex combination of recognition probabilities 

( )(T)
tP θ  with respect to the MHT prior distribution on 

the candidate target model space: 
  

( ) ( ) ( )(T)

targets T

Pr Tt tP Pθ θ= ∑  

 
Finally, although not highlighted above for clarification 
purposes, we remark that resolution dependence of the 
maintained CID recognition probabilities is important and 
affects the SRM calculation by allowing it to anticipate 
expected CID performance differences for video acquired 
at distinct zoom levels, as specified by ground sample 
distance. Thus, for example, the SRM can determine if 
currently available zoom levels are compatible for CID 
querying against earlier learned images. The SRM can 
also balance the benefit of selecting wider fields of view 
to potentially allow the MHT to process more kinematic 
data for other nearby targets, against the resolution 
requirements that ensure good CID learning performance 
for the current target of interest. 

4  Examples 
4.1  Single FOV Example 
Figure 6 illustrates the behavior of the MHT and the 
interaction with the CID module in a typical situation. It 
is assumed that the image resolution is good enough for 
the CID module to operate, so that the SRM does not 
need to zoom the camera in to acquire higher resolution 
imagery. 

• In Figure 6A, the VP detects objects moving on the 
ground and sends detections and temporal coherence 
information to the MHT.   

• In Figure 6B, the MHT creates tracks after a number 
of associated detections are consistent with the 
motion of a ground target. If the temporal coherence 
information is high, the MHT only generates one 
track hypothesis. The figure only shows the track 
associated with the first vehicle.  

• In Figure 6C, the target goes behind some trees and 
is not detected by the VP. The MHT maintains a 
track and predicts the motion of the vehicle. 

• In Figure 6D, the target reappears and is again 
detected by the VP. Since the detections are 
consistent with the motion of the first target, a new 
hypothesis is created that postulates that the new 
detections belong to the target that is being tracked. 
At the same time, another hypothesis that postulates 
that the first target is still occluded is maintained. 

• In Figure 6E, the two hypotheses are maintained until 
enough evidence that favors one of the competing 
hypotheses can be accumulated. Evidence can be 
derived from kinematic consistency, but can also be 
derived from the CID response message. In this 
example, a number of detections have been linked to 
each other and are sent to query the CID module. In 
plain words, the query message posses the following 
question: “do these reports belong to this particular 
target?” 

• In Figure 6F, the CID response contains likelihoods 
that correspond to the alternative hypothesis. In this 
example, the likelihood that “the detections are 
generated by this particular target” is much higher 
than the likelihood that “the detections are NOT 
generated by this particular target.” Since the 
confidence is high, the MHT removes the alternative 
hypothesis and maintains only that one that contains 
the new detections. These detections are now 
unambiguously associated to that target, and can 
therefore be sent to the CID module for learning. In 
the hypothetical case that the CID likelihoods are not 
decisive enough, they are combined with the total 
likelihood for that track. This typically triggers a 
subsequent query unless one of the competing 
hypotheses gets removed for another reason.
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A: The VP detects objects moving on the ground. 

C: An occluded target can not be detected, but the 
motion is predicted by the MHT. 

D: The reappearing target is detected by the VP and the 
MHT creates two hypotheses that represent two possible 
alternatives: the new detection belongs to the target, or 

the new detection belongs to another vehicle. 

E: The CID module is queried if a number of consistent 
detections are deemed to be appropriate for the CID.

F: A highly confident CID response induces the pruning 
of the least likely hypothesis by MHT. In this case, the 
hypothesis that claims that “this is the same target” is 

maintained while the alternative hypothesis that claims 
that “this is another target” is removed. 

B: A track is created if a number of associated detections 
are consistent with the motion of a vehicle. A CID 
Learning message is generated if the detections are 

unambiguously associated to a single target. The picture 
shows the only track hypothesis that is created for the first 

target. Other tracks are not displayed. 

Figure 6: Example of interaction between MHT and CID to create and exploit object signatures. A blue cross 
indicates detections by the VP; a blue ‘L’ indicates that the detections are used in the learning message and therefore 

used to create object signatures by the CID; a blue ‘Q’ indicates that the detection is used in the query message; 
green boxes indicates different track hypotheses for the leading vehicle. 



4.2  Multiple FOV Example 
The example above was generated under the assumption 
that the CID module can operate with Ground Sample 
Distances (GSD) in the order of 20cm per pixel. 
However, the performance of the CID module is typically 
higher for higher resolution. Thus, the camera needs to be 
zoomed in for the learning and query cycles to be most 
useful. The sequence in Figure 7 illustrates a typical 
MHT/CID interaction when the sensor is zoomed in and 
out. Changes of FOV and pointing angles are commanded 
by the SRM. The image on the upper left corner shows 
the target that is being tracked. When the target is 
nominated, the SRM zooms in on the target to acquire 
high resolution images, as shown in the upper right corner 
(zoomed images in the figure are simulated). As the target 
enters the occlusion and no more detections are 
generated, the target location is predicted by using the last 
estimated ground position and velocity. Naturally, the 
uncertainty of the estimated location grows with time. 
When the target emerges after the occlusion (bottom left 
of Figure 7), the tracker creates two hypotheses: one that 
postulates that the current detections correspond to the 
nominated target, and another one that postulates that the 
nominated target is still occluded and therefore the 
current detections correspond to another target or are 
false alarms. To resolve this ambiguity the SRM sends a 
command to aim the camera at the detections using a 
narrow FOV to acquire high resolution images (bottom 
right of Figure 7). The MHT system then sends a query to 
the CID module to confirm the identity of the target. If 
the answer is affirmative—as in this example—the MHT 
removes alternative hypotheses. If the answer is negative, 
the MHT removes the hypothesis that postulates that 
these detections correspond to the nominated target and 
continues to coast the track associated with the nominated 
target. 

5  Conclusions 
This paper described the interactions of a signature 
extraction and exploitation module with the multiple 
hypothesis tracker and the sensor resource manager. 
These modules and a front-end video processor are the 
main components of a signature-aided system that 
exploits airborne imagery to track multiple ground 
targets. The signature-aided system enables the 
maintenance of the tracks after relatively large periods of 
occlusion and coverage gaps. This system was developed 
under the VIdeo Verification of IDentity (VIVID) 
program sponsored by the US Defense Advanced 
Research Projects Agency (DARPA) and is currently 
being transitioned to an operational platform. 
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Figure 7: Tracking through extended occlusions requires the use of the Confirmatory ID module to 
confirm the identity of the target when this is reacquired. 


